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Results and discussion 

The performance of the new translation functions 
was tested on various known structures. Some 
examples are given in Table 1. 

The results show that the new functions Q's are less 
powerful than Qs. In all given examples the highest 
peak in Q~ gives the correct position of the fragment, 
whereas for some of the examples peak number 2 or 
3 in Q'~ gives the correct position. The new functions 
Q's, however, are very useful if Qs leads to an 
ambiguous result. An example is given in Table 2, in 
which the second peak in Q~ is ruled out because this 
peak does not occur in Q'~. 

An observation, made by Doesburg & Beurskens 
(1983), is also valid for Q's: one-dimensional searches 
(for mirror or glide planes) are slightly more reliable 
than two-dimensional searches (symmetry axis) and 
far more so than a search for a center of symmetry. 

The new translation functions are incorporated in 
the DIRDIF program package (Beurskens et al., 
1984), with negligeable increase in core and CPU 
requirements. 
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Abstract 

Crystal movement, detected during data collection, 
requires the orientation matrix to be modified, so that 
reflection positions can be correctly predicted. If the 
unit cell is assumed to remain unchanged, the 
necessary modification is a small rotation of the 
matrix, viz premultiplication by an orthogonal matrix. 
This rotation is easily calculated from the observed 
positions of two or more centred reflections, by the 
application of quaternion algebra. 

Introduction 

Crystal movement (slippage) during single-crystal 
intensity data collection is a recognized problem in 
structure determination. It is usually monitored by 
the periodic measurement of a number of standard 
reflections. Changes in the intensities of these may 
indicate crystal movement, various forms of instru- 
ment instability or radiation damage to the crystal. 
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If profile analysis techniques are employed in the 
data collection, changes in profile shape or position 
of the reflection peaks may also suggest movement. 

Most commercial diffractometer control programs 
include a routine for re-establishing the orientation 
matrix and then continuing with the data collection, 
possibly repeating the last batch of reflections. This 
routine may be entered when standard reflection 
measurements show a significant change in orienta- 
tion or at regular intervals as a precaution. The normal 
method is that described by Vandlen & Tulinsky 
(1971 ). Reflections contained in a list are centred and 
the orientation matrix is refined from the positions 
found. This refinement is generally an unconstrained 
refinement of the nine elements of the matrix (Tich~, 
1970; Shoemaker & Bassi, 1970), which effectively 
changes the unit-cell parameters too. 

The major drawback of this method is the time 
consumed by the centring routine, which can be par- 
ticularly slow on machines not equipped with special 
hardware such as half-shutters (beam splitters). The 
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routine also involves a lot of driving and if the move- 
ment continues during this process the exercise may 
be in vain. 

An alternative is to assume that the unit cell remains 
constant and only the crystal orientation has changed. 
In this case, the nine parameters to be determined 
are effectively reduced to three, describing a small 
rotation of the orientation matrix. Fewer reflections 
are needed in order to update the matrix by this 
method and data collection can be resumed with 
minimum time loss. 

Method 

Suppose we have a list of N reflections with indices 
given by the vectors hi (i = 1 to N). On the basis of 
the current orientation matrix A, we calculate 
reciprocal-space coordinates on the q~-axis system, 
xi =Ahi :  see Clegg (1984) for the notation and axis 
definitions. The reflections are centred, giving corre- 
sponding observed coordinates yi. In order to update 
the orientation matrix we must now apply an 
orthogonal rotation matrix R, which gives the best fit 
of the vectors x to the observations y: A '=  RA. 

The problem of finding the best rotation to relate, 
two sets of vectors has been addressed with particular 
application to the comparison of two molecular struc- 
tures and various solutions have been proposed 
(Kabsch, 1976, 1978; McLachlan, 1982). The applica- 
tion of quaternion algebra gives a rapid linear solu- 
tion. A description of some of the properties of 
quaternions and their application for comparing two 
molecular structures are given by Mackay (1984). The 
main difference in the application here is that both 
the observations Yi (centred reflections) and the corre- 
sponding calculated vectors xi are already based on 
the same reciprocal-space axes, so no transformation 
of coordinates to new centre-of-gravity origins is 
made. 

Using the notation of Mackay (1984), we wish to 
find the rotation angle 0 and the direction cosines l, 
m, n of the rotation axis. Writing t for tan (0 /2) ,  
x~, xb, x~ and ya, yb, yc for the x and y coordinates of 
each calculated and observed reciprocal-lattice point, 
respectively, we obtain three simultaneous linear 
equations for each reflection, 3N in all: 

malized to unity and their lengths used as weights in 
the refinement. A positive value of 0 is always 
obtained from the square root of tan 2 (0/2), but no 
ambiguity is involved, because the signs of l, rn and 
n automatically define the correct sense of the rotation 
axis. 

From 0, l, m and n, the required rotation matrix R 
is given by equation (1) of Mackay (1984): 

R =  

12 d + c mid + ns nld - m s \  

l m d -  ns m2d +c nmd + l s l ,  

lnd + m s  m n d - l s  n2d +c / 

where s = sin 0, c = cos 0 and d = 1 - c o s  {9. The 
orientation matrix A is updated (A'= RA) and data 
collection continues. 

This method requires a minimum of two reflections, 
but there is no maximum limit to the number. For 
convenience, the same reflections may be used as 
standard reflections for monitoring the data collection 
and as reflections for updating the orientation matrix. 

The same method may be used for establishing a 
preliminary orientation matrix from a known unit cell 
(possibly from photographic investigation) and as 
few as two indexed and centred reflections: the rota- 
tion to be determined need not be small, and the 
initial A matrix can be set up from the cell parameters 
for any arbitrary orientation. With two reflections, 
this is equivalent to the method of Busing & Levy 
(1976) (where the orientation matrix is called UB), 
except that the two reflections are assigned equal 
weight, rather than arbitrarily ascribing all the 
measurement error effectively to one reflection. 

It should be stressed that any automatic orienta- 
tion-checking routine assumes that the crystal remains 
reasonably centred in the X-ray beam. If this is not 
the case, subsequent measurements are invalid. The 
method described here additionally assumes that the 
unit cell remains unchanged if the crystal slips. It is 
a development of the method used in our diffrac- 
tometer control program system for a number of years 
(Clegg, 1981) and is incorporated in the form 
described here in the program version currently being 
developed. 

mt(yc + xc) 

- l t ( y c + x c )  

It(yb + Xb) --mt(ya + X~) 

--nt(yb +Xb)=(ya--X,,) 
+nt(ya + Xa) = (Yb -- Xb) 

=(yc--Xc).  

The 3N equations are solved by the usual least- 
squares method, to give values of lt, mt  and nt, from 
which 0, l, m and n are calculated (12+m2+n  2= 1). 
It makes little difference in practice whether the 
refinement is carded out unweighted with the x and 
y vectors unmodified or whether the vectors are nor- 
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